Posts

Showing posts from October, 2020

Steady compliance (Linear viscoelasty)

Boltzmann superposition: assume that there is no stress when $t\le 0$, so the integral starts from $0$ and $\sigma(0^{-})=0$: $$\begin{equation} \gamma(t)=\int_0^t J(t-t^\prime)\dot{\sigma}(t^\prime)\mathrm{d}t^\prime \end{equation}$$  Performing Laplace Transform yields:  $$\begin{align} \hat{\gamma}(s)&=\hat{J}(s)\hat{\dot{\sigma}}(s)\\ &=\hat{J}(s)\left(s\hat{\sigma}(s)-\sigma(0^{-})\right) \\ &=\hat{J}(s)\left(s\hat{G}(s)\hat{\dot{\gamma}}(s)-\sigma(0^{-})\right)\\ &=\hat{J}(s)\left(s\hat{G}(s)(s\hat{\gamma}(s)-\gamma(0^-))-\sigma(0^{-})\right)\\ &=s^2\hat{J}(s)\hat{\gamma}(s)\hat{G}(s)  \end{align}$$ Here we let $\hat{f}(s):=\mathcal{L}\lbrace f(t)\rbrace(s)$ be the Laplace transformation and since the stress starts at time $0$, $\gamma(0^-)$ and $\sigma(0^-)$ are simply $0$. The 2nd to 3rd step is derived from the convolution relation $\sigma(t)=\int_0^t G(t-t^\prime)\dot{\gamma}(t^\prime)\mathrm{d}t^\prime$. Cancelling out the $\hat{\gamma}(s)$ and rearrangin