Eigenvalues of circulant matrices

A circulant matrix is defined as:

$C=\begin{bmatrix}c_{0}&c_{n-1}&\dots &c_{2}&c_{1}\\c_{1}&c_{0}&c_{n-1}&&c_{2}\\\vdots &c_{1}&c_{0}&\ddots &\vdots \\c_{n-2}&&\ddots &\ddots &c_{n-1}\\c_{n-1}&c_{n-2}&\dots &c_{1}&c_{0}\\\end{bmatrix}$

where $C_{j, k}=c_{j-k \mod n}$. The $k$-th eigenvalue $\lambda_k$ and eigenvector $x_k$ satisfy $C\cdot x_k=\lambda_k x_k$, which can be expressed as $n$ equations:

$\sum_{j=0}^{m-1}c_{m-j}x_j+\sum_{j=m}^{n-1}c_{n-j+m}x_j=\lambda_k x_m\quad m=0,1,\dots,n-1$

with $c_n=c_0$, where $x_m$ is the $m$-th component of the eigenvector $x_k$. By changing the dummy summing variables ($j\to m-j$ and $j\to n-j+m$), we obtain:

$\sum_{j=1}^{m}c_j x_{m-j} +\sum_{j=m+1}^{n}c_j x_{n+m-j}=\lambda_k x_m$

with $m=0,1,2,\dots,n-1$. We can “guess” a solution where $x_j=\omega^j$, which transforms the equation into:

$\begin{align}&\sum_{j=1}^{m}c_j \omega^{m-j} +\sum_{j=m+1}^{n}c_j \omega^{n+m-j}=\lambda_k \omega^m\\ \leftrightarrow &\sum_{j=1}^{m}c_j \omega^{-j} +\omega^{n}\sum_{j=m+1}^{n}c_j \omega^{-j}=\lambda_k\end{align}$

Let $\omega$ be one of the $n$-th roots of unity, i.e., $\omega = \exp(-2\pi\mathbb{i}/n)$, then $\omega^{n}=1$. This leads to the eigenvalue:

$\lambda = \sum_{j=0}^{n-1}\omega^{-j} c_j$

with the corresponding eigenvector:

$x= (1, \exp(2\pi\mathbb{i}/n), \exp(2\pi\mathbb{i}/n)^2,\dots,\exp(2\pi\mathbb{i}/n)^{n-1})^T$

The $k$-th eigenvalue is generated from $\omega^{-k} = \exp(2\pi k\mathbb{i}/n)$ with $k\in [0,n-1]$, resulting in the $k$-th eigenvalue and eigenvector:

$\lambda_k = \sum_{j=0}^{n-1}c_j \exp(2\pi k\mathbb{i}/n)$

and

$x_k = (1, \exp(2\pi k\mathbb{i}/n), \exp(2\pi k\mathbb{i}/n)^2,\dots,\exp(2\pi k\mathbb{i}/n)^{n-1})^T$

The eigenspace is simply the DFT matrix, and all circulant matrices share the same eigenspace. It is easy to verify that circulant matrices possess the following properties:

If $A$ and $B$ are circulant matrices, then:

  1. $AB=BA=W^\ast\Gamma W$ where $W$ is the DFT matrix and $\Gamma=\Gamma_A\Gamma_B$, with $\Gamma_i$ representing the diagonal matrix consisting of the eigenvalues of $i$; $\Gamma_A = WAW^\ast$.
  2. $B+A=A+B=W^\ast\Omega W$, where $\Omega=\Gamma_A+\Gamma_B$.
  3. If $\mathrm{det}(A)\ne 0$, then $A^{-1}=W^\ast \Gamma_A^{-1}W$.

The proof is straightforward:

  1. $AB=W^\ast \Gamma_AW W^\ast\Gamma_BW=$
    $W^\ast\Gamma_A\Gamma_BW=W^\ast \Gamma_B\Gamma_AW=BA$
  2. $W(A+B)W^\ast=\Gamma_A+\Gamma_B$.
  3. $AW^\ast \Gamma_A^{-1}W=W^\ast \Gamma_AW W^\ast \Gamma_A^{-1}W=\mathbb{I}$

No Comments.

Back2Top ^