Introduction
Saddle point methods are widely used to estimate integrals of the form:
$I = \int \exp\left(-f(x)\right)\mathrm{d}x$
where the function $f(x)$ can be approximated by the first two terms of its Taylor series expansion around a point $x_0$:
$f(x)\approx f(x_0) + f^\prime (x_0)(x-x_0) + \frac{1}{2}f^{\prime\prime}(x_0)(x-x_0)^2$
The integral is then approximated by its value at the saddle point, where $f^\prime (x_0)=0$ and $f^{\prime\prime}(x_0)>0$:
$\begin{align} I&\approx \int \exp\left(-f(x_0) – \frac{1}{2}f^{\prime\prime}(x_0)(x-x_0)^2\right) \mathrm{d}x\\ &=\exp(-f(x_0))\sqrt{\frac{2\pi}{f^{\prime\prime}(x_0)}} \end{align}$
Examples
- Stirling’s Formula:
Using the definition of the Gamma function, we have:
$N!=\int_0^\infty \exp(-x)x^N\mathrm{d}x$
Let $f(x):=x-N\ln(x)$. For large $N$, the negative term is negligible. Solving $f^\prime (x) = 0$, we obtain:
$N!\approx\exp(-N+N\ln(N))\sqrt{2\pi{}N}=\sqrt{2\pi{}N}\left(\frac{N}{e}\right)^N$
- Partition Function:
The partition function is given by:
$Z = \int \exp(-\beta U(\mathbf{x})) \mathrm{d}\mathbf{x}$
where $U(\mathbf{x})$ can be approximated by:
$U(\mathbf{x})\approx U(\mathbf{x}_0) + \frac{1}{2}(\mathbf{x}-\mathbf{x}_0)^T H[U](\mathbf{x}-\mathbf{x}_0)$
where $H$ represents the Hessian matrix.
End-to-End Distribution Function of Random Walk Model of Polymer Chains
For an $N$-step random walk model, the exact end-to-end vector distribution is:
$\begin{align} P(\mathbf{Y})&=\frac{1}{(2\pi)^3}\int \mathrm{d}\mathbf{k} \exp(-i\mathbf{k}\cdot\mathbf{Y})\tilde{\phi}^N\\ &=\int_{0}^{\infty} k\sin(kY) \left(\frac{\sin(kb)}{kb}\right)^N \mathrm{d}k \end{align}$
where $\phi(\mathbf{x})=\frac{1}{4\pi b^2}\delta(|\mathbf{x}|-b)$ is the distribution of a single step vector (length=$b$) and $\tilde{\phi}$ is its characteristic function; $\mathbf{Y}:=\sum_{i=1}^N \mathbf{x}_i$ is the end-to-end vector. Let $s=kb$ and $f(s):=i\frac{Y}{Nb}s -\ln\frac{\sin(s)}{s}$. Then we have:
$\begin{align} P&=\frac{i}{4\pi^2 b^2 Y}\int_{-\infty}^{+\infty} s \exp\left(-is\frac{Y}{b}\right)\left(\frac{\sin(s)}{s}\right)^N\mathrm{d}s\\ &=\frac{i}{4\pi^2 b^2 Y} \int s \exp(-Nf(s)) \mathrm{d} s\end{align}$
The integral is extended to $(-\infty, +\infty)$ due to the symmetry of the sine and cosine functions. The first sine function is replaced with an exponential form using Euler’s formula: $\exp(ix)=\cos(x)+i\sin(x)$.
Solving $f^\prime(s)=0$, we find that $is$ satisfies:
$\coth(is)-\frac{1}{is}=\frac{Y}{Nb}$
This is the Langevin function, $is_0=L^{-1}(\frac{Y}{Nb})$. Therefore, we have:
$\begin{align} P &\approx\frac{s_0}{4\pi^2b^2Y}\sqrt{\frac{2\pi}{Nf^{\prime\prime}(s_0)}}e^{-Nf(s_0)}\\ &=\frac{1}{(2\pi{}Nb^2)^{3/2}}\frac{L^{-1}(x)^2}{x(1-(L^{-1}(x)\csc\left(L^{-1}(x)\right))^2)^{1/2}}\\&\times\left(\frac{\sinh\left(L^{-1}(x)\right)}{L^{-1}(x)\exp\left(xL^{-1}(x)\right)}\right)^N\end{align}$
where $x:=\frac{Y}{Nb}$.